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Abstract. Using thermodynamic argnments we find that the probability that there are no
eigenvalues in the interval (—s,00) in the double scaling limit of Hermitian matrix models
is Ofexp(~s¥*2) as s — +oo, Here y = m — 1/2, m = 1,2, ... determines the mth multi-
critical point of the level density: o (x} oc 51 —(x/B}*]¥, X € (—b,b)and 5 « N. Furthermore,

the size of the transition zone, where the eigenvalue density becomes vanishingly small at the -

tail of the spectrum, is & N~ D20+1) in asraement with earlier work based upon the string
equation.

A basic quantity in Hermitian matrix models is the probability, - E»(0; J), that a set J
contains no eigenvalues. For N x N Hermitian mamx models with unitary symmetry we
have the well known expression

JSrexe[-Y, V)] dux) _ Z[J]

fJUf ex‘p [H Za V(xu)] d'u,(x) - Z{J U j} = CXP[_(F[J] - F[J U J])I

(0

E(0; ) =

with

dpxy =[] |xe—=l® [] dx

Iga<bsN 7 1€ugN

where J is the complement of J and V(x) is the ‘confining’ potential [1]. As indicated
in (1)}, minus the logarithm of this probability has the physical interpretation, in terms of
Dyson’s Coulomb fluid [2-5], as the change in free energy

AF=F[J1-FlJuJ]1 = . @)

that is, the free energy of the N charges confined to region J minus the free energy of N
charges in the natural support J U J of w(x) := e~V ®),

In this leteer we shall mainly consider the case J = (—s, oo) 5 > 0, and write E,(s) for
Ea(0; {(—s, o0)). We shall use the continuum approximation of Dyson [2] which treats the
N eigenvalues in the large N limit as a continuous fluid described by a continuous charge
density o with the free energy expressed in terms of ¢, This approximation has previously
been applied to the unitary Laguerre ensemble (ULE) where w{x} = x%e™*, x € (0, o0) and
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o > —1 [5]j. Here we examine matrix models withi

V) = Zj That oLl ©

with g» = 1. In principle, we should not have to make the continuum approximation since
it is known that E»(0; J) is expressible in terms of solutions to a completely integrable
system of partial differential equations [6]. However, the analysis of these equations for V'
of the form given by (3) is quite difficult. {Of course, the Gaussian case is not included in
this remark.} It is hoped that the approximate expressions derived here, which we believe
are asymptotic as s > co, will aid in the analyses of these equations.

" To begin, consider the Gaussian unitary ensemble (GUE) with ga40 = 0 for k > 1.
For the scaled GUE with J = (—t, 1) it is known that E;(0; (—z,¢)) is a v-function of a
particular fifth Painlevé transcendent [7]. Starting with this representation, an asymptotic
expansion for E2(0; (—¢,1)) as 1 — o0 can be derived, though the first such asymptotic
expansion was achieved by Dyson using methods of inverse scattering [8]. (Actually, there
is still an undetermined constant from either the inverse scattering analysis or the Painlevé
analysis, see e.g. [9].) The leading term, ~ In E5(0; (=2, £)) ~ n%t%/2, was first obtained
from the fluid approximation [2]. Indeed, the 72 term of the asymptotic expansion can be
given a simple physical interpretation: it is proportional to the square of the number of
eigenvalues excluded in the (scaled) interval (—¢, ¢), since in the bulk scaling limit of the
GUE the eigenvalue density is a constant ~ +/2 /. This suggests that a natural variable is
one which gives uniform density in the excluded interval., We can always achieve this by
a simple change of variables since the problem is one-dimensional. By introducing a new
variable § and a corresponding p(£) via the relation

the density in the § ‘scale’ is made unity. Therefore, —In E2(0; J) is asymptotic to

& 2 xz 2
[f dé] = [f o(x) dx:l J = {x1,x2).
& X

We conclude from the above arguments that for a large interval
—1n E2(0; ) ~ N2(Q)- )
where
N (1) = number of eigenvalues excluded in an interval of length I. {6)

We mention that a screening theory of the contimium Coulomb fluid gives a physical
Jjustification of these arguments [10], though we do not know of a proof of the general
validity of this relationship.

i Itis known from the theary of liquids (by an application of the Boltzmann principle) that the probability, Py(R),
of finding a bubble of radiug R in the buik of a fluid {in 4 dimensions) at equilibrium with temperature 1/8 is

Pa(R) ~ exp [-,eEv RY = BEay R“"‘] R > coherence length

where Ev is the energy/fvolume for creating a bubble and Ejy is the surface energy. If we specialize this formula
to d =1 then

Py (R} ~ exp[—constant R]

in contradiction with the known result [2]. This is due to the fact that the Coulomb fluid has long ranged
interactions. )
} The reason for our choice of notation for the coefficients of V will become clear below,
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To further test the validity of (5) and (6 ) we consider the edge scaling limit of the
GUE where exact results are known [11]. Accordingly, we simply compute the number of
eigenvalues excluded from an interval of length I{= b — q) from the soft edge b = +/2N:

b b .
ND = f dx ;rl-\/bz —x2x2b f dx Vb — x o [2VANVE[P? =1 32,

Observe that N2(!) ~ 53 not only supplies the correct exponent in the scaled variable s
(= 2Y2N'%]) in —In E3(s), we also have the correct density at the soft edge oy (v2ZN) =
212N1/6 which agrees with known exact results {1, 11). This result predicts the shrinking
of the size of the transition zone (~ N—1/6) as N — oo—a reasonable behaviour from the
Coulomb fluid point of view since the GUE potential x2 is strongly confining. The same
-approximation has been applied to the origin scaling limit of the ULE [5] and the result
agrees with the first term of the exact asymptotic expansion [12].

These two confirmations of the validity of (5) and (6) give us confidence to apply the
method to the matrix models with V given by (3). (These are the cases of interest in the
matrix models of two-dimensional quantum gravity [13, 14].) The charge density o satisfies
an integral equation [2, 3] derived from the following minimum principle:

rrgm Flo]

Flo] =-fjdx V{x)o(x) —fjdfodya(x) Inlx —ylo (3} )
subject to the constraint [, dx o(x) = N, which- is '
Vix)—2 f Z dy In|x — ylo(y) = constant = chemical potential x € (=b,b), &)
Since V is ;ven 0 is o. Making use of this symmetry (8} becomes

Vix) -2 fo ’ dy In|x® — y*|o(¥) = constant. , ©)
With the change of vériablcs x*=u, y* = v and r(u) = 0 (/u)/(2s/%), (9) becomes

V{/u) -2 f ! dvr(@}In|z —v| = constant & (0, F°). (10)
This is converted into a singoular integral equation by differentiating with respect to u:

. ;,2
LA R f wl® o Lewo. Can
Code o u—v

Here b, which determines the upper and lower band edges, is fixed by the normalization
condition f_bb o(x)dx = N.
Following [15] the solution is}

1 [2—u_ % dv [T VR )
r(u)_ﬁ i Po v—uYbr—v du w5
B2 — 3 u '
=Y teFi (kL3 1-55) | (12)

§ Constant/+/u(p? — «) solves the homogeneous part of (11). However, based on the variational principle,
including this solution would increase the free energy. 2F1(—%,1,3/2,2) = Eﬁ=0[(—k),,/(3/2),.]z" is a
polynomial of degree k in z.
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where the integral can be found in [16] and
1
Iy 1= —EJT—ZB('—'%, k+ %)82k+2-

Returning to o, it can be shown that

o(x) =b/1- (%)zn,, [( ’iﬂ (13)

where I1,(z) is a polynomial of degree p in z with coefficients depending on the linear
combinations of the coupling constants g,. The edge parameter & is determined from the
normalization condition and reads 4> = CN where

1

C= = :
SR a A= 2m,00)

is independent of N.
Taking the special case p = 1 (now g4 == g), we have

b 2. g_ X2
@ =2y1=(3) [‘+5+g(z)]-
By tuning g to g., such that —g; = 1+ g./2, we have

3/2
o(s) = consiant 5| 1~ (5|

producing a qualitative deviation in the density at the edges (&) of the specﬁrum from
Wigner’s semi-circle distribution [17, 14]. A calculation now gives

b b
N « f dx b(1 — x/BY (1 +x/b)? =~ % f (b —x)*12 ~ (yNII0YS/2 ., 512
(14)

and thus — In E»() ~ s°. Observe that due to this tuning, the length of the transition zone
(~ N¥1%) is now an increasing function of &. It is clear that the tuning procedure can be
generalized to p > 1 [13]. By simultaneously adjusting the coupling constants g4, gs etc,
to their respective critical values we can have

Fava s )
o) =constant b [1 - (E) ] (15)
where ¥ = p + 1. Computing N (!) we find 7
b : r+l

Voo [ (1-3) (1+5) « (semmmm) = 16)
Therefore, .

In Ea(s) & —s%*2 (s = o0). _ a7
The non-perturbative soft edge density is determined as

on(vV/N) 2 NU=7)/20+r) N — oo, ’ (18)

The corresponding size of the transition zone is ~ N¥, where
p={y—-1/2r+1

1 In quantum gravity literature y =m —1/2, m=1,2,....
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a result previously obtained from the string equation [17, 18]. Note that our x variable is
related to Bowick and Brézin’s A as x = +/NA [17]. Supplying the appropriate +/N factor
we obtain from (18) Bowick and Brézin’s result N—2/2m+D),
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acknowledges the Science and Engineering Research Council, UK for the award of a
“Visiting Fellowship, the National Science Foundation through grant DMS-9303413, and
the Mathematics Department of Imperial College for their kind hospitality.
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