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Largest eigenvalue distribution . in the double scaling limit 
of matrix models: a Coulomb fluid approach 
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t Lkpartment of Malhemalics. Imperial College, London SW7 2BZ. UK 
% Department of Wematics and Institute of Theoretical Dynamics, Univenity of Califomia, 
Davis;CA 95616, USA . 

Received 10 January 1995 

Abstract. Using 'thermodynamic arguments we find that~the probability that  there^ are no 
eigenvalues in the interval (-s, m) in the double scaling limit of H e r m i h  matrix models 
is O(exp( -~~y+~) )  as s + +m. Here y = m - 112. m = 1.2,. . . determines the mth multi- 
criticalpointoftheleveldensity: o(x)  c( b [ l - ( ~ / b ) ~ ] Y . x  E (-b,b)andb2 o( N .  Furthermore, 
the size of the transition zone, where the eigenvalue density becomes vanishingly small at the 
tail of the spectrum, is w N(Y-1) /2(Y+l)  in agreement with earlier work based upon the swing 
equation. 

. .  . .  
A basic quantity in Hermitian matrix models is the probability,~EZ(O; J),  that a set J 
contains no eigenvalues. For N x N Hermitiari matrix models wlth u n i t B j  symmetry we 
have the well known expression 

, 

(1) 

with 

d/&) = n IX.'--Xbl* n 
1Go<bGN 14oGN 

where is the complement of J and V(X) is the 'confining' potential [l]. As indicated 
in (I), minus the logarithm of this probability has the physical interpretation, in terms of 
Dyson's Coulomb fluid [2-51, as the change in free energy 

A F = F [ J ] - F [ J U J ]  ~ . . (2) 

that is, the free energy of the N charges confined to region 1 minus the free energy of N 
charges in the natural support J U 

In this letter we shall mainly consider the case J = (--s.Jo), s > 0, and write &(s) for 
E2(O; (-$,a)). We shall use the cuntinuum.approximation of Dyson [Z] which treats the 
N eigenvalues in the large N limit as a continuous fluid described by a continuous charge 
density CT with the free energy expressed in terms of cr. This approximation has previously 
been applied to the unitary Laguene ensemble (ULE) where w ( x )  =,rue-=, x E (0, CO) and 

of w ( x )  := 
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(Y > -1 [5]t. Here we examine matrix models with$ 

with g2 = 1. In principle, we should not have to make the continuum approximation since 
it is known that Ez(0; J )  is expressible in terms of solutions to a completely integrable 
system of partial differential equations [6]. However, the analysis of these equations for V 
of the form given by (3) is quite difficult. (Of course, the Gaussian case is not included in 
this remark.) It is hoped that the approximate expressions derived here, which we believe 
are asymptotic as s 

1. 
For the scaled GUE with J = (4, t )  it is known that &(0; (4, t ) )  is a r-function of a 
particular fifth Painlevt transcendent [7]. Starting with this representation, an asymptotic 
expansion for E,(@ ( - t ,  t ) )  as f --f 00 can be derived, though the first such asymptotic 
expansion was achieved by Dyson using methods of inverse scattering [SI. (Actually, there 
is still an undetermined constant from either the inverse scattering analysis or the Painlev6 
analysis, see e.g. [9].) The leading term, -In&(O: ( - t ,  t ) )  - zZt2/2, was first obtained 
from the fluid approximation 121. Indeed, the t2 term of the asymptotic expansion can be 
given a simple physical interpretation: it is proportional to the square of the number of 
eigenvalues excluded in the (scaled) interval ( - t ,  t ) ,  since in the bulk scaling limit of the 
GUE the eigenvalue density is a constant - a N / ~ r .  This suggests that a natural variable is 
one which gives uniform density in the excluded interval. We can always achieve this by 
a simple change of variables since the problem is one-dimensional. By introducing a new 
variable 

00, will aid in the analyses of these equations. 
' To begin, consider the Gaussian unitary ensemble (GUE) with ga+2 = 0 for k 

and a conesponding p(c) via the relation 

p( t )dc := Id5 = u(x)dr (4) 
the density in the t 'scale' is made unity. Therefore, -In Ez(0; J )  is asymptotic to 

We conclude from the above arguments that for a large interval 

- In J) - ~ ' ( 1 )  (5) 

N(1) = number of eigenvalues excluded in an interval of length 1. (6) 
We mention that a screening theory of the continuum Coulomb fluid gives a physical 
justification of these arguments [lo], though we do not know of a proof of the general 
validity of this relationship. 

t It is known from the theory of liquids (by an application of the Boltzmann principle) that the probability. P,,(R), 
of finding a bubble of radius R in the bulk of a fluid (in d dimensions) at equilibrium with temperature 1/p is 

where 

Pd(R) -exp [-pEvRd - BE;,yRd-']  R >>coherence length 

where Ev is the energylvolume for creating a bubble and EJV is the surface. energy. If we specialize this formula 
to d = 1 then 

P I ( R )  - exp[-constant RI 

in conuadiction with the known result PI. This is due to the fact that the Coulomb fluid has long ranged 
interactions. 
T The reason for our choice of notation for the coefficienu of V will become clear below. 
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To further test the validity of (5) and (6 ) we consider the edge scaling limit of the 
GUE where exact results are known [Ill. Accordingly, we simply compute the number of . 
eigenvalues excluded from an interval of length Z(= b -a) from the soft edge b = ./?% 

N(1) = l ' d r  7r 'm cf & [ d r  f i  rx [2i/2N'/6113/2 =: S3/'. 

Observe that N2(1) - s3 not .only supplies the correct exponent in the scaled variable s 
(= 21/2N'/61) in -In &(s), we also have the correct density at the soft edge U N ( ~ )  = 
2'/'N'/', which agrees with known exact results [I, 111. This result predicts the shrinking 
of the size of the transition zone (- N-1'6) as N + cc-a reasonable behaviour from the 
Coulomb fluid point of view since the GUE potentid x2 is strongly confining. The same 
,approximation has been applied to the origin scaling limit of the L q  [.5l and the result 
agrees with the first term of the exact'asymptotic expansion 1121. 

These two confirmations of the validity of (5) and (6) give us confidence to apply the 
method to the matrix models with V given by (3). (These are the cases of,interest in the 
matrix models of two-dimensional quantum gravity [13,14].) The charge density U satisfies 
an integral equation 12, 31 derived from the following minimum principle: 

min F [ u ]  
d 

F l u ]  = ~ dx V(x)u(x) - dr dy u(x) In Ix - ylu(y) c7) s, s , s ,  

V ( x )  -2J'dy lnlxZ- y21u(y) =constant. 

V(&) - 2 1  dv r(u) In lu - V I  = constant 

subject to the constraint j ,  dr g ( x )  = N, which is 

V ( x )  - 2 l  dy In Ix - ylu(y) = constant = chemical potential 

Since V is even so is U. Making use of this symmetry (8) becomes 

x E (4, b). (8) 

(9) 
~. 

With the change of variables x2 = U ,  y z  = U and r (u ) ,=  u(f i ) / (2 , /3 ,  (9) becomes 
h' 

U E (0, b'). (10) 

This is converted into a singular integral equation by differentiating with respect to U: 

Here b, which determines the upper and lower band edges, is fixed by the normalization 
condition j!b u(x) dx = N .  

Following [15] the solution ist 

t C o n s W n r j m  solve.~Ihe homogeneous pat of (11). However, based on the variational principle, 
including this solution would increase the free energy. zFI(-k.  1 , 3 1 2 . ~ )  = ~ ~ = o [ ( - k ) . / ( 3 / 2 ) . l r "  is a 
polynomial of degree k in 2. 
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where the integral can be found in [I61 and 
1 

239 t k  := - - B ( - + ,  k+ ;)gix+z. 

Retuming to U ,  it can be shown that 

where n,,(z) is a polynomial of degree p in z with coefficients depending on the linear 
combinations of the coupling constants gk. The edge parameter b is determined from the 
normalization condition and reads b2 = C N  where 

1 C =  
J-:’ dt m n , ( t z )  

is independent of N .  
Taking the special case p = 1 (now g4 = g), we have 

By tuning g to g,, such that -g, = 1 + gJ2, we have 

u(x) =constant b [ 1 - (31’” - 

producing a qualitative deviation in the density at the edges ( i b )  of the speckm from 
Wigner’s semi-circle distribution [17, 141. A calculation now gives 

(14) 
and thus - In - s5. Observe that due to this tuning, the length of the transition zone 
(- A’’/’’) is now an increasing function of N. It is clear that the tuning procedure can be 
generalized to p > 1 [13]. By simultaneously adjusting the coupling constants g4, gg etc, 
to their respective critical values we. can have 

U(X) =constant b 1 - - [ (3y 
where y = p + tt. Computing N ( l )  we find 

Therefore, 

In E&) r.~ --s zy+z ~ (s -+ 00). 

The non-perturbative soft edge density is determined as 
~“(f i )  M N ( l - y ) / z ( l + Y )  N -+ W. 

The corresponding size of the transition zone is M N”, where 

I* = (Y - 1)/2(Y + 1) 

t In quantum gravity literature y = m - 112, m = I ,  2. 
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a resuIt previously obtained from the seing equation [17, 181. Note that our x variable i* 
related to Bowick and Brizin’s A as r = v%A [17]. Supplyins the appropriate v% factor 
we obtain from (IS) Bowick and Bdzin’s result N-*/”+”. 
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